在大数据商品化之前, 利用大数据分析工具和技术来取得竞争优势已不再是秘密。2015年, 如果你还在职场上寻找大数据的相关工作, 那么, 这里介绍的9种技能,将帮助你得到一个工作机会。
1. Apache Hadoop
Hadoop现在已经进入第二个10年发展期了, 但不可否认的是, Hadoop在2014年出现了井喷式发展, 由于Hadoop从测试集群向生产和软件供应商方向不断转移, 其越来越接近于分布式存储和处理机架构, 因此, 这一势头在2015年会更加猛烈。由于大数据平台的强大, Hadoop可能是一个挑剔的怪兽, 它需要熟悉的技术人员细心的照顾和喂养。掌握Hadoop最核心技术 (例如, HDFS, MapReduce, Flume, Oozie, Hive, Pig, HBase, and YARN) 的技术人员在职场上的需求将越来越大。
2. Apache Spark
如果说Hadoop在大数据世界中已广为人知, 那么Spark就是一匹黑马, 它所蕴含的原始潜力使Hadoop黯然失色。无论是否是Hadoop架构, 快速崛起的内存计算技术被认为是MapReduce风格分析框架更快和更简洁的替代方案。Spark最佳的定位应当是大数据技术族中重要的一个成员。Spark仍然需要专业技术进行编程和运行, 这为知晓该技术的工程师提供了不错的工作机会。
3. NoSQL
在大数据的操作层面, 诸如 MongoDB 和 Couchbase 等分布式、可扩展的 NoSQL 数据库正在接管市场份额极为庞大的的 SQL 数据库, 例如 Oracle 和 IBM DB2。在 WEB 和移动 app 层面, NoSQL数据库常常被做为
Hadoop分析的数据源。在大数据领域, Hadoop 和 NoSQL 分别成为良性循环的两个端点。
4. Machine Learning and Data Mining(机器学习和数据挖掘)
人们习惯于对收集的数据进行挖掘,但是, 在当今大数据的世界里, 数据挖掘已经达到了一个全新的高度。机器学习成为去年大数据技术最热门的领域之一, 2015年顺理成章地成为它的突破之年。大数据将会使那些能够利用机器学习技术去构建和训练像分类、推荐和个性化系统等预测分析应用程序的人成为职场宠儿, 取得就业市 场上的顶级薪金。
5. Statistical and Quantitative Analysis(统计和定量分析)